Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 70(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34491156

RESUMO

Introduction. The increase of invasive fungal infections (IFIs) and associated treatment failure in populations at risk is driving us to look for new treatments.Hypothesis. The CIN-102 compound, derived from cinnamon essential oil, could be a new antifungal class with an activity, in particular, on strains resistant to current antifungals but also on biofilms, a factor of virulence and resistance of fungi.Aim. The aim of this study is to show the activity of CIN-102 on various strains resistant to current antifungals, on the biofilm and to determine the possibility of resistance induced with this compound.Methodology. We studied the MIC of CIN-102 and of current antifungals (voriconazole and amphotericin B) using CLSI techniques against eight different strains of three genera of filamentous fungi involved in IFIs and having resistance phenotypes to current antifungals. We also determined their effects on biofilm formation, and the induced resistance by voriconazole (VRC) and CIN-102.Results. MIC values determined for CIN-102 were between 62.5 and 250 µg ml-1. We demonstrated the antifungal effect of CIN-102 on biofilm, and more particularly on its formation, with 100 % inhibition achieved for most of the strains. CIN-102 at a sub-inhibitory concentration in the medium did not induce resistance in our strains, even after 30 generations.Conclusions. In this study we show that CIN-102 is effective against resistant filamentous fungi and against biofilm formation. In addition, our strains did not acquire a resistance phenotype against CIN-102 over time, unlike with VRC. CIN-102 is therefore an interesting candidate for the treatment of IFIs, including in cases of therapeutic failure linked to resistance, although further studies on its efficacy, safety and mechanism of action are needed.


Assuntos
Antifúngicos/farmacologia , Benzoatos/farmacologia , Biofilmes/efeitos dos fármacos , Cinamatos/farmacologia , Fungos/efeitos dos fármacos , Micoses , Terpenos/farmacologia , Anfotericina B/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Voriconazol/farmacologia
2.
Drug Discov Today ; 26(9): 2182-2189, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34119667

RESUMO

Antimicrobial susceptibility tests (AST) are based on the minimal inhibitory concentration (MIC), the method used worldwide to guide antimicrobial therapy. Despite its relevance in correctly predicting clinical outcome for most acute infections, this approach is misleading for multiple clinical cases in which pathogens do not grow rapidly, uniformly or with physical protection. This behaviour, named 'metabolic evasion' (ME), enables bacteria to survive antimicrobials. ME can result from different, and sometimes combined, bacterial mechanisms such as biofilms, intracellular growth, persisters or dormancy. We discuss how ME can influence the MIC-based probability of target attainment. We identify clinical cases in which this approach is undermined by ME and propose a new approach that takes ME into account in order to improve patient management and the evaluation of innovative drugs.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Bactérias/metabolismo , Árvores de Decisões , Humanos , Resultado do Tratamento
3.
PLoS Negl Trop Dis ; 15(6): e0009488, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106933

RESUMO

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissue and most commonly caused by the fungus Madurella mycetomatis. Treatment of mycetoma consists of a combination of a long term antifungal treatment with itraconazole and surgery. However, treatment is associated with low success rates. Therefore, there is a need to identify novel treatments for mycetoma. CIN-102 is a synthetic partial copy of cinnamon oils with activity against many pathogenic bacteria and fungi. In this study we determined the in vitro activity of CIN-102 against 21 M. mycetomatis isolates and its in vivo efficacy in a M. mycetomatis infected Galleria mellonella larval model. In vitro, CIN-102 was active against M. mycetomatis with MICs ranging from 32 µg/mL to 512 µg/mL. 128 µg/mL was needed to inhibit the growth in 50% of tested isolates. In vivo, concentrations below the MIC of 40 mg/kg and 80 mg/kg CIN-102 prolonged larval survival, but higher concentrations of CIN-102 did not.


Assuntos
Antifúngicos/farmacologia , Benzoatos/farmacologia , Cinamatos/farmacologia , Cinnamomum zeylanicum/química , Madurella/efeitos dos fármacos , Micetoma/microbiologia , Terpenos/farmacologia , Animais , Benzoatos/síntese química , Cinamatos/síntese química , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Madurella/genética , Madurella/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Micetoma/tratamento farmacológico , Terpenos/síntese química
4.
J Glob Antimicrob Resist ; 25: 171-180, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798742

RESUMO

OBJECTIVES: Today, the increase of invasive fungal infections and the emergence of resistant strains are observed in medical practice. New antifungals are expected, and the plant world offers a panel of potentially active molecules. CIN-102 is a mixture of seven different compounds of plant origin developed from the formulation of cinnamon essential oil. METHODS: The in vitro activity of CIN-102 was characterised against Aspergillus spp., Fusarium spp. and Scedosporium spp. by studying the minimum inhibitory concentration (MIC), inoculum effect, germination inhibition, fungal growth, post-antifungal effect (PAFE) and synergy. RESULTS: MICs determined for the three genera followed a unimodal distribution and their mean values ranged from 62-250 µg/mL. CIN-102 demonstrated an inoculum effect similar to voriconazole and amphotericin B, 100% inhibition of spore germination and a PAFE. CONCLUSION: CIN-102 has significant activity against filamentous fungi involved in human pathologies and should be further explored as a potential new treatment. Other studies regarding its mechanisms of action as well as animal investigations are awaited.


Assuntos
Antifúngicos , Fungos , Anfotericina B , Antifúngicos/farmacologia , Benzoatos , Cinamatos , Combinação de Medicamentos , Humanos , Terpenos
5.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31619024

RESUMO

The current rise in invasive fungal infections due to the increase in immunosuppressive therapies is a real concern. Moreover, the emergence of resistant strains induces therapeutic failures. In light of these issues, new classes of antifungals are anticipated. Therefore, the plant kingdom represents an immense potential of natural resources to exploit for these purposes. The aim of this review is to provide information about the antifungal effect of some important essential oils, and to describe the advances made in determining the mechanism of action more precisely. Finally, the issues of toxicity and resistance of fungi to essential oils will be discussed.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Resistência Microbiana a Medicamentos , Sinergismo Farmacológico , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...